Getting the Facts: Monitoring Green Infrastructure

8 01 2010

In Wednesday’s post, I mentioned the benefits of monitoring to help explain the reasons why green infrastructure facilities are being employed in their neighborhoods and specifically their effectiveness in improving water quality in our rivers and stream for which we all depend.

The City of Portland has done a great job at monitoring their green streets and other green infrastructure facilities. They provide this information on the Bureau of Environmental Services’ (BES) website. Their 2008 evaluation of their green street facilities have shown that for a 25-year storm event ( 25-yr, 6-hr) that peak flows were reduced by 80% or more. For CSO compliance events, their studies were shown to capture 60% or more of the storm volume.

It appears less has been published by the City on the pollutant removal capabilities for green streets. However, as mentioned in the article, studies conducted across the country have shown bioretention areas, the main stormwater management component of a green street, have been shown to be very effective. EPA’s fact sheet on bioretention shows the following removal rates:

  • Total Phosphorous: 70%-83%
  • Metals (Copper, Zinc, Lead): 93%-98%
  • Total Kjehldahl Nitrogen (TKN): 68%-80%
  • Total Suspended Solids: 90%
  • Organics: 90%
  • Bacteria: 90%

These number continue to be supported through researched conducted over the last decade. The concern that the accumulation of these pollutants, particularly metals will pose health risk have been unsubstantiated. A four-year study by Philip Jones (student) and Dr. Allan Davis (advisor) at the University of Maryland, showed the level of pollutants that accumulated within a bioretention cell on campus to exceed soil background levels but were far below EPA cleanup standards.

It is important to remember that currently, most conventional stormwater devices have no capacity to address pollutant removal. Portland is at the forefront in implementing green infrastructure practices and will be well positioned as Federal standards continue to be strengthened over the coming decade. More importantly, they are improving the water quality of their rivers for future citizens.

If fact, the EPA recently announced they are conducting stakeholder input in an effort to initiate a national rulemaking that would establish a comprehensive program to reduce stormwater discharges from new development and redevelopment and make other regulatory improvements to strengthen its stormwater program. At a minimum the EPA intends to propose a rule to control stormwater from newly developed and redeveloped sites, and to take final action no later than November 2012.

-Brian Phelps





Kansas City Stormwater Overflow Control Plan

4 12 2009

Source: Kansas City, Missouri Overflow Control Plan Overview Document

This year Kansas City embarked on a massive $2.3 billion stormwater overflow control plan to address sewer overflows throughout the city. Its inclusion of a major $28 million green infrastructure pilot project has gained a lot of attention. The project has been recognized as the largest green infrastructure project in the United States. The Marlborough Neighborhood Pilot Project, as it is called, is located in the Middle Blue River Basin, one of the four major watersheds addressed by the plan. The entire pilot project encompasses nearly 100 acres of primarily residential neighborhoods. This program is anticipated to be expanded over a larger 744 acre area that will eventually include over 25 acres of mixed green infrastructure strategies (i.e. rain gardens, bioswales, permeable pavement, and green roofs) that have the capacity to sequester 3.5 million gallons of water. The green infrastructure strategies employed are designed to replace two underground tanks of similar capacity. In total the pilot project and its expansion are budgeted to cost $68 million.

Video of compiled images from Mark O’Hara’s Greenbuild Presentation about the Kansas City Plan. The video shows various Green Infrastructure Strategies recommended in the plan. Video compiled by Hawkins Partners Images provided by BNIM (Click here to see it if  video is not present)

In addition to the Marlborough Neighborhood Pilot Project, the plan also recommends the enhancement of the area’s highly acclaimed 10,000 Rain Garden Program. Over the past two years, the initiative is reported to have installed several hundred rain gardens, bioswales, and rain barrels. The purpose of the expansion it to develop an incentive program to accelerate the program’s progress and complement the public investments being made.

Wet retention basin projects have been identified as an appropriate strategy for treating stormwater downstream from six separated sewer system (SSS). The plan acknowledges that green infrastructure is beneficial and should be included where it is practical. The plan states:

“Every decision should be viewed as an opportunity to incorporate a green-solutions approach. The City has adopted an “every drop counts” philosophy, meaning it is important to reduce stormwater entering the system wherever practicable. This will be accomplished through changing the way the community develops and redevelops its sewer and stormwater infrastructure, educating citizens regarding steps they can take to reduce the amount of stormwater entering the sewer system, enabling citizens to take those steps, incorporating green infrastructure in the design of public infrastructure, and making targeted public investments in green infrastructure projects early in the Plan implementation.”

Areas identified that should be considered for green infrastructure projects include those meeting the following criteria:

  • Areas for which no or minimal conventional structural controls are proposed.
  • Areas in which widespread implementation of green solutions by the community at large offer the greatest opportunities for reducing the size and cost of conventional structural controls included in the Plan.
  • Areas for which it would be particularly desirable to further reduce the projected overflow
    activation frequency following completion of recommended controls.
  • Areas in which sewer separation is proposed but where no Water Services Department (WSD) investment in treating the separate stormwater runoff has been included in the Plan.
  • The plan’s ambitious Marlborough Neighborhood Pilot Project is very encouraging, particularly as a stand alone project. It is very significant and the City should be commended for their efforts. However based on the $2.3 billion budget established by the plan, it is evident that green infrastructure will play a supporting role. The plan was developed during the recent significant shift in the way we address stormwater management across the country over the last few years. It is not surprise to see this. What is encouraging is the magnitude of the pilot project and the extensive monitoring that will be conducted.

    The monitoring component will provide valuable data for the City and others across the country. In addition to understanding green infrastructure’s effectiveness to control Combined Sewer Overflows (CSOs) and improving water quality, monitoring it will provide insight into conflicts with local codes and ordinance, social-economic benefits, construction techniques, associated cost, and maintenance practices.

    The plan stresses that it is an evolutionary document, referring to it as an “adaptive management” approach. The approach involves evaluation of the strategy throughout the life of the project based on their experiences and data gathered through the monitoring efforts. While green infrastructure may not be the predominant tool of choice at this point, the longer-term nature of the plan provides the opportunity to adjust its course as confidence increases in green infrastructure. The City’s plan can become more green overtime as it builds upon its successes.

    Fairly or unfairly, like many pilot projects much rests on the success of the Marlborough Neighborhood Pilot Project. Many, both locally and nationally will be watching it with great interest. Failure of such a high profile project could significantly set back the growth of green infrastructure as the stormwater management tool of choice. Therefore, it is critical it is done to the highest standards possible. The project will serve as an example for those involved in stormwater planning and design to have full confidence and understanding of the complexities of utilizing natural systems. Natural processes are complex making them more difficult to quantify. A paper prepared in 2007 by the Center for Neighborhood Technology titled “Managing Urban Stormwater with Green Infrastructure: Case Studies of Five U.S. Local Governments”, identified the lack of performance data as a barrier to green infrastructure implementation. The more research we do and data we collect the better off we will all be.

    I anticipate this will be a successful demonstration of green infrastructure. It is exciting to see another city embrace green infrastructure on such a large scale. We will all eagerly await the results and follow its realization. Construction is expected to start soon.

    -Brian Phelps