Funding Green Infrastructure: Understanding A Project’s “Benefit Fingerprint”

20 09 2010

Last week I attended the American Society of Landscape Architect’s (ASLA) annual meeting in Washington D.C. It was invigorating to hear about promising green infrastructure related projects being plan and constructed across the United States. One favorite was Herbert Dreiseitl’s presentation on the promise of water. His approach and sensitivity to water was inspiring.

Many of the conference sessions reinforced the multiple benefits of green infrastructure projects and the importance of continuing to build the data supporting these benefits. In addition, it was clear that green infrastructure projects are addressing multiple political agendas and problems facing our cities.  As a result, municipalities are able to seek funding from a variety of traditional and non-traditional sources. When considering these sources, it is critical to understand and quantify the benefits of a project.

While all green infrastructure projects have multiple benefits, depending on the approach, site, and its context, each project will have a unique combination and varying impact.  Understanding this “benefit fingerprint” is helpful in successfully targeting funding sources. It also opens up the possibilities of non-traditional sources and helps others see the project with a broader perspective.

-Brian Phelps





Philadelphia Green Infrastructure Video

7 09 2010

I recently came across this video covering Philadelphia’s Green Infrastructure Efforts. It was created by GreenTreks, an award-winning Philadelphia-based non profit communications organization dedicated to educating people about the interconnectedness of environmental, societal, economic, and individual health. For more information and links to other resources on Philadelphia’s triple bottom line green infrastructure strategy  see our past post  Triple Bottom Line of Green Infrastructure.

Brian Phelps





Metro Green Infrastructure Master Plan Now On-line

1 09 2010

Metropolitan Nashville-Davidson County’s Green Infrastructure Master Plan is now available on Metro Water Services’ website. The plan was prepared by amec, Hawkins Partners, Urban Blueprint, and the Low Impact Development Center. The plan includes the following:

  • Green Infrastructure Practice – Overview of Green Infrastructure and descriptions of various practices.
  • Technical Analysis of Green Infrastructure – Analysis of the CSS area with respect to green roofs, three kinds of infiltration practices, tree planting, and rainfall harvesting (cisterns and rain barrels) and its potential impacts on the CSS.
  • Green Infrastructure Projects – Brief overview of the preliminary design concepts for six projects.
  • Green Infrastructure Incentives and Financing – Summary of various potentially applicable incentive practices that have been applied in other cities to encourage the use of Green Infrastructure.

Click here to download the entire plan in PDF format





Deaderick Street Discussed at StormCon 2010

20 08 2010

Kim Hawkins, a principal with our office, recently spoke at this years StormCon in San Antonio, TX. She and Jim Snyder P.E., who at the time of the design and construction of the street was with Metro Nashville Public Works and who is now with Metro Nashville Water Services , spoke about the process of bring Nashville’s 1st Green Street to fruition. The following is the abstract about the presentation.

ABSTRACT: DEADERICK STREET – TENNESSEE’S 1ST GREEN STREET

Nashville, TN

Nashville Metro Public Works, Client

Hawkins Partners, Inc worked with the Office of the Mayor and Metro Public Works to transform a historically and civically significant corridor in the downtown area which serves as a physical connector between the city/county courthouse and the state legislative arm of government. Prior to the renovations, the street had become most widely known as the central transfer point for the Metro bus system. In the fall of 2008 the bus system’s hub was relocated one block north to the ambitious Music City Central, presenting an opportunity to re-envision the street itself.

Deaderick Street sits within the Kerrigan Basin, one of Nashville’s Combined Storm Sewer (CSS) basins, that has historically been subject to overflows., it is Nashville’s first implementation of LID features in the public right-of-way, the first green street in Tennessee and one of the first green street applications in the southeast. The renovations to the street primarily focused on addressing stormwater issues and urban trees.  Pervious surface within the right of way was increased by 700% through the use of rain gardens, pervious concrete and .bioswales were implemented in pedestrian bulbs at the intersections.  The site design worked within the context of the existing street and the existing storm drainage system, retrofitting existing storm drains to serve as overflow only. Rain gardens and bioswales were designed with engineered soils to allow infiltration and planted with plants, including many natives, that are adaptable to the extremes of wet and dry conditions. Based on Nashville’s historical rainfall patterns, infiltration rates and variable design factors, it is estimated that over 1.2 million gallons will be removed from the CSO system on an annual basis through this three block urban street..

In addition to the stormwater aspects of Deaderick, a number of other sustainable features were incorporated into the street, including LED lighting, recycled steel site furniture, crushed concrete as base aggregate material, fly ash for concrete and solar powered parking meters.





Bike Share Programs

18 06 2010

I’ve known about bike share programs for sometime, but hadn’t really thought of them recently until I visited Menominee, a small town in Michigan’s upper peninsula. Menominee, population about 9,200, is located on the western shore of Lake Michigan; is has a nice marina and a small airport a few miles inland. I noticed bike racks full of yellow bikes and a few people riding them around town too. I learned that the city’s bike share program (they call it the Yellow Bike Program) has been in place for four years now. It was started completely by volunteers of the local Rotary Club and donated bikes in a effort to promote tourism. Today the program includes 47 bikes spread around the city at various community locations, such as the airport, marina, history museum and library.

One of the first bike share program in the US was started in Portland, OR in 1994. The program simply released bicycles into the city for unrestrictive use, but proved unsuccessful due to theft and vandalism. Other cities such as Madison, WI tried similar programs, but eventually modified to a more restrictive system requiring deposits for use of the bicycles. Washington DC instituted the first high-tech European style bike share program in the US in 2008, called SmartBike DC.
Montreal has the largest bike sharing program in North America, called Bixi. In 2009 the system had some 400 stations where bicycles can be rented with a credit card, there are over 5000 bicycles in the system. The system has had so much success that Washington DC/Arlington is also adopting the Bixi program, as well as Washington State University. This particular program offers varied pay scales from $5/day to $78/year. Pretty reasonable if you live or work in the city and have the need to use a bicycle. By the way, Menominee’s Yellow Bike program is completely free, you just need to show your drivers license and leave a phone number, the advantage of a small town.

There are many other bike share program in cities throughout the US, the Bike-sharing Blog has a lot of additional links and information if interested. Also, something to be aware of in the coming months,  Nashville has plans to start its own bike share program soon.

-Sara Putney

Yellow Bikes at Menominee Airport





Density as a Best Management Practice (BMP)

4 06 2010

High Point Neighborhood mentioned in Ped Shed Post
photo credit: sitephocus.com

The Ped Shed, a blog focused on walkable urban design and sustainable placemaking by Laurence “L.J.” Aurbach, recently had a post about density as a best management practice (BMP). The post provides a good outline of the evolution of the stormwater regulatory environment. The main point of the post is that well intentioned stormwater regulations make it difficult to build dense walkable environments that ultimately exacerbate stormwater management issues.

The author states:

“But the universal and inflexible application of BMPs and LID can have significantly negative consequences on the quality of urban places and the health of watersheds. LID purports to encourage smart growth and urban redevelopment, but as a rule this support is nominal, little more than lip service. In general practice, LID puts urban density at a competitive disadvantage.”

He cites three studies, two by the EPA (Protecting Water Resources with Higher-Density Development, Using Smart Growth Techniques as Stormwater Best Management Practices) and one by Jacob and Lopez (Is Denser Greener? An evaluation of higher density development as an urban stormwater quality best management practice.) All of them provide compelling data as to the benefits of density with regard to stormwater run-off and pollutant loads, and are well worth reading.

I agree with him that when developing an urban vs suburban site, more expensive stormwater BMPs are typically utilized (i.e. underground detention, green roofs) to meet stormwater regulations.

However, site area, property costs, and market dynamics are a large factor in determining appropriate BMPs and cost effective solutions. If you can build significantly more square footage due to a better market environment and/or need to maximize your investment in land cost (which often reflects the market potential and property entitlements) then the cost of best management practices that maximize these potentials can be offset.

The examples of offsite mitigation are very intriguing. I wholeheartly agree that opportunities for this on properties in close proximity to the development is an effective way to mitigate stormwater impacts while spreading (and hopefuly lowering) the cost across multiple properties. In regard to infill developement, this can be very difficult in practices but not impossible. Public space can be designed to accommodate the needs of neighboring properties. Using green roofs, pervious pavements, and other BMPs on surrounding properties can greatly reduce the volume of runoff being diverted to these offsite areas and therefore their size  can be diminished to a point that can be integrated better into urban environments.

-Brian Phelps





BLUE is the New Green

16 04 2010

I think I may have heard the term “blue roof” before last Saturday, but I must not have paid attention.  I was fascinated as I read New York City’s NYC Stormwater Sustainability Report 2008. It included a full description of a blue roof as an LID measure.   I checked out  few other leads to find this LID technique also being explored in Washington state and a recent article in EDC Magazine discussing it as well.

Bottom line:  a blue roof detains water on the roof of a structure in order to reduce the stormwater impacts.  The detention is done through a  flow restriction device around the roof drain which slowly releases the water or, in the Washington modeling, all of the rainwater on the rooftop is collected and stored.  The roof-harvested water can used to fill a water cistern for irrigation, a site infiltration system like a bioswale or rain garden or discharged slowly to the storm system.

The blue roof is best suited to a large flat roof in more urban areas with limited availability of ground level detention.  There are also designs which provide wide “gutters” near the perimeter of the roof to concentrate the water roof load where it can be supported structurally.  If the primary goal is stormwater reduction, then a blue roof can achieve that goal at considerably less cost than a vegetated green roof.  The estimates I found ranged from $1/s.f. to $4/s.f. for a blue roof while estimates for an extensive green roof might be $18-25/s.f.   Blue roofs also don’t have the same maintenance costs of green roof either – they basically require the same maintenance as a conventional roof..

Of course, the blue roof doesn’t provide the multi-benefit that green roofs do (such as energy use reduction, habitat, aesthetic, life cycle roof cost), but 2008 modeling conducted by Douglas Beyerlein, PE, Clear Creek Solutions in Mill Creek Washington does show the blue roof slightly outperforming the green roof for stormwater reduction.

-Kim Hawkins