EPA Releases Technical Guidance for Implementing EISA Section 438

9 12 2009

Just in case you missed it last week among all of the other pressing news stories, the EPA released a report outlining technical guidelines for implementing the stormwater runoff requirements for federal projects under Section 438 of the Energy and Independence and Security Act (EISA). In effort to afford designers maximum flexibility, the guidance provided is performance-based. The Section 438 of the EISA established the following requirements:

“Storm water runoff requirements for federal development projects. The sponsor of any development or redevelopment project involving a Federal facility with a footprint that exceeds 5,000 square feet shall use site planning, design, construction, and maintenance strategies for the property to maintain or restore, to the maximum extent technically feasible, the predevelopment hydrology of the property with regard to the temperature, rate, volume, and duration of flow.”

On October 5th, the White House issued a Presidential Executive Order addressing this requirement. The Executive Order titled “Federal Leadership in Environmental, Energy, and Economic Performance.” It required the EPA in coordination with other agencies to develop guidelines for implementing Section 438 of the EISA within 60 days. The current publication meets these guidelines.

The guidelines establish two options for meeting Section 438. The first option is to retain 100% of a rainfall event on site that is less than or equal to a 95th percentile. A 95th percentile rainfall event is an event with a volume over a 24-hr period that is equal to or less than the volume of 95% of all rain events for a period of record (i.e. 20 to 30 years). The table from the report provided below shows the size of the 95th percentile events for various cities across the Country. The events range between 0.7 to 1.8 inches of rainfall. These events commonly known as a “first flush” event were identified because they often contain the highest level of pollutants. Option 2 allows designers to conduct their own hydrological analysis and determine the site specific pre-development hydrological conditions. This options states that “temperature of runoff should not exceed the pre-development rates and the predevelopment hydrology should be replicated.”

For both of these options, the guidelines encourage the use of green infrastructure stategies. The guidelines recognize that “runoff event frequency, volume and rate can be diminished or eliminated through the use of green infrastructure (GI)/Low Impact Design (LID) designs and practices, which infiltrate, evapotranspire and capture and use stormwater”. The guidelines provide a number of studies that illustrate how green infrastructure can meet the established criteria. It is exciting to see the continued momentum green infrastructure is experiencing. If your considering working on federal projects, you will need to take a serious look at green infrastructure as an integral part of your site strategy.





Kansas City Stormwater Overflow Control Plan

4 12 2009

Source: Kansas City, Missouri Overflow Control Plan Overview Document

This year Kansas City embarked on a massive $2.3 billion stormwater overflow control plan to address sewer overflows throughout the city. Its inclusion of a major $28 million green infrastructure pilot project has gained a lot of attention. The project has been recognized as the largest green infrastructure project in the United States. The Marlborough Neighborhood Pilot Project, as it is called, is located in the Middle Blue River Basin, one of the four major watersheds addressed by the plan. The entire pilot project encompasses nearly 100 acres of primarily residential neighborhoods. This program is anticipated to be expanded over a larger 744 acre area that will eventually include over 25 acres of mixed green infrastructure strategies (i.e. rain gardens, bioswales, permeable pavement, and green roofs) that have the capacity to sequester 3.5 million gallons of water. The green infrastructure strategies employed are designed to replace two underground tanks of similar capacity. In total the pilot project and its expansion are budgeted to cost $68 million.

Video of compiled images from Mark O’Hara’s Greenbuild Presentation about the Kansas City Plan. The video shows various Green Infrastructure Strategies recommended in the plan. Video compiled by Hawkins Partners Images provided by BNIM (Click here to see it if  video is not present)

In addition to the Marlborough Neighborhood Pilot Project, the plan also recommends the enhancement of the area’s highly acclaimed 10,000 Rain Garden Program. Over the past two years, the initiative is reported to have installed several hundred rain gardens, bioswales, and rain barrels. The purpose of the expansion it to develop an incentive program to accelerate the program’s progress and complement the public investments being made.

Wet retention basin projects have been identified as an appropriate strategy for treating stormwater downstream from six separated sewer system (SSS). The plan acknowledges that green infrastructure is beneficial and should be included where it is practical. The plan states:

“Every decision should be viewed as an opportunity to incorporate a green-solutions approach. The City has adopted an “every drop counts” philosophy, meaning it is important to reduce stormwater entering the system wherever practicable. This will be accomplished through changing the way the community develops and redevelops its sewer and stormwater infrastructure, educating citizens regarding steps they can take to reduce the amount of stormwater entering the sewer system, enabling citizens to take those steps, incorporating green infrastructure in the design of public infrastructure, and making targeted public investments in green infrastructure projects early in the Plan implementation.”

Areas identified that should be considered for green infrastructure projects include those meeting the following criteria:

  • Areas for which no or minimal conventional structural controls are proposed.
  • Areas in which widespread implementation of green solutions by the community at large offer the greatest opportunities for reducing the size and cost of conventional structural controls included in the Plan.
  • Areas for which it would be particularly desirable to further reduce the projected overflow
    activation frequency following completion of recommended controls.
  • Areas in which sewer separation is proposed but where no Water Services Department (WSD) investment in treating the separate stormwater runoff has been included in the Plan.
  • The plan’s ambitious Marlborough Neighborhood Pilot Project is very encouraging, particularly as a stand alone project. It is very significant and the City should be commended for their efforts. However based on the $2.3 billion budget established by the plan, it is evident that green infrastructure will play a supporting role. The plan was developed during the recent significant shift in the way we address stormwater management across the country over the last few years. It is not surprise to see this. What is encouraging is the magnitude of the pilot project and the extensive monitoring that will be conducted.

    The monitoring component will provide valuable data for the City and others across the country. In addition to understanding green infrastructure’s effectiveness to control Combined Sewer Overflows (CSOs) and improving water quality, monitoring it will provide insight into conflicts with local codes and ordinance, social-economic benefits, construction techniques, associated cost, and maintenance practices.

    The plan stresses that it is an evolutionary document, referring to it as an “adaptive management” approach. The approach involves evaluation of the strategy throughout the life of the project based on their experiences and data gathered through the monitoring efforts. While green infrastructure may not be the predominant tool of choice at this point, the longer-term nature of the plan provides the opportunity to adjust its course as confidence increases in green infrastructure. The City’s plan can become more green overtime as it builds upon its successes.

    Fairly or unfairly, like many pilot projects much rests on the success of the Marlborough Neighborhood Pilot Project. Many, both locally and nationally will be watching it with great interest. Failure of such a high profile project could significantly set back the growth of green infrastructure as the stormwater management tool of choice. Therefore, it is critical it is done to the highest standards possible. The project will serve as an example for those involved in stormwater planning and design to have full confidence and understanding of the complexities of utilizing natural systems. Natural processes are complex making them more difficult to quantify. A paper prepared in 2007 by the Center for Neighborhood Technology titled “Managing Urban Stormwater with Green Infrastructure: Case Studies of Five U.S. Local Governments”, identified the lack of performance data as a barrier to green infrastructure implementation. The more research we do and data we collect the better off we will all be.

    I anticipate this will be a successful demonstration of green infrastructure. It is exciting to see another city embrace green infrastructure on such a large scale. We will all eagerly await the results and follow its realization. Construction is expected to start soon.

    -Brian Phelps





    Making Green Infrastructure Common Place

    6 11 2009

    Philly_Green_City1

    Getting more for less is an approach almost everyone can appreciate. Why wouldn’t you want to get the most out of your investments? Appropriately applying green infrastructure in ways that effectively addresses critical stormwater issues while creating a more beautiful and economically vibrant community is common sense. Unfortunately, it isn’t common place. As the use of the available sustainable site tools and technologies continues to grow, it may not be long before green infrastructure is the conventional approach to stormwater management.

    With the Release of their “Green Cities Clean Waters Plan”, Philadelphia joins a handful of cities across the Country that have committed to green infrastructure and seek to institutionalizing it throughout the city. Philadelphia’s plan published last September sets forth a bold plan to invest $1.6 billion. Of this total 62% ($1 billion) of it will allocated directly to green stormwater infrastructure. Another 18% ($290M) will directed to stream corridor restoration and preservation and 20%($320M) will address wet weather treatment plant upgrades.

    Over the next few weeks we will take a closer look at Philadelphia’s plan. At over 3,000 pages, there is a lot of information to sift through. In addition, we will also look at Pennsylvania Environmental Council released a report titled “Implementing Green Infrastructure: Developing a Winning Strategy to Fund Philadelphia’s Ambitious Plan” that looks at the economic benefits of the plan and how other cities across the country are funding their stormwater initiatives. Together they are an impressive step forward for the City of Philadelphia and the Nation.

    -Brian Phelps